Question: The sum  $ \sum\limits _{i=0}^{m}{( \begin{matrix}    10  \\    i  \\ \end{matrix} )}( \begin{matrix}    20  \\    m-i  \\ \end{matrix} ), $   $ ( where( \begin{matrix}    p  \\    q  \\ \end{matrix} )=0ifp<q ) $ , is maximum when m is [IIT Screening  2002]
Options:
A) 5
B) 15
C) 10
D) 20
  Show Answer
  Answer:
Correct Answer: B
Solution:
- For m  $ =5,\sum\limits _{i=0}^{5}{(   \begin{aligned}   & 10 \\  & i \\   \end{aligned} )(   \begin{aligned}   & 20 \\  & 5-i \\   \end{aligned} )} $   $ =(   \begin{aligned}   & 10 \\  & 0 \\   \end{aligned} )(   \begin{aligned}   & 20 \\  & 5 \\   \end{aligned} )+(   \begin{aligned}   & 10 \\  & 1 \\   \end{aligned} )(   \begin{aligned}   & 20 \\  & 4 \\   \end{aligned} )+…+(   \begin{aligned}   & 10 \\  & 5 \\   \end{aligned} )(   \begin{aligned}   & 20 \\  & 0 \\   \end{aligned} ), $  for m = 10,  $ \sum\limits _{i=0}^{10}{(   \begin{aligned}   & 10 \\  & i \\   \end{aligned} )(   \begin{aligned}   & 20 \\  & 10-i \\   \end{aligned} )} $   $ =(   \begin{aligned}   & 10 \\  & 0 \\   \end{aligned} )(   \begin{aligned}   & 20 \\  & 10 \\   \end{aligned} )+(   \begin{aligned}   & 10 \\  & 1 \\   \end{aligned} )(   \begin{aligned}   & 20 \\  & 9 \\   \end{aligned} )+(   \begin{aligned}   & 10 \\  & 2 \\   \end{aligned} )(   \begin{aligned}   & 20 \\  & 8 \\   \end{aligned} ) $  $ +…+(   \begin{aligned}   & 10 \\  & 10 \\   \end{aligned} )(   \begin{aligned}   & 20 \\  & 0 \\   \end{aligned} ) $ , for m = 15,  $ \sum\limits _{i=0}^{15}{(   \begin{aligned}   & 10 \\  & i \\   \end{aligned} )(   \begin{aligned}   & 20 \\  & 15-i \\   \end{aligned} )} $   $ =(   \begin{aligned}   & 10 \\  & 0 \\   \end{aligned} )(   \begin{aligned}   & 20 \\  & 15 \\   \end{aligned} )+(   \begin{aligned}   & 10 \\  & 1 \\   \end{aligned} )(   \begin{aligned}   & 20 \\  & 14 \\   \end{aligned} )+(   \begin{aligned}   & 10 \\  & 2 \\   \end{aligned} )(   \begin{aligned}   & 20 \\  & 13 \\   \end{aligned} )+..+( \begin{matrix}    10  \\    10  \\ \end{matrix} )( \begin{matrix}    20  \\    5  \\ \end{matrix} ) $  and for m = 20,  $ \sum\limits _{i=0}^{20}{(   \begin{aligned}   & 10 \\  & i \\   \end{aligned} )(   \begin{aligned}   & 20 \\  & 20-i \\   \end{aligned} )} $   $ =(   \begin{aligned}   & 10 \\  & 0 \\   \end{aligned} )(   \begin{aligned}   & 20 \\  & 20 \\   \end{aligned} )+(   \begin{aligned}   & 10 \\  & 1 \\   \end{aligned} )(   \begin{aligned}   & 20 \\  & 19 \\   \end{aligned} )+…+(   \begin{aligned}   & 10 \\  & 10 \\   \end{aligned} )(   \begin{aligned}   & 20 \\  & 10 \\   \end{aligned} ) $  Clearly, the sum is maximum for m = 15. Note that  $ ^{10}C _{r} $  is maximum for r = 5 and  $ ^{20}C _{r} $  is maximum for r = 10. Note that the single term  $ ^{10}C_5\times {{}^{20}}C _{10} $ (in case m = 15) is greater than the sum  $ ^{10}C_0{{}^{20}}C _{10}+{{}^{10}}C_1{{}^{20}}C_9+{{}^{10}}C_2{{}^{20}}C_8+….. $   $ ^{10}C_8{{}^{20}}C_2+{{}^{10}}C_9{{}^{20}}C_1+{{}^{10}}C _{10}{{}^{20}}C_0 $ (in case m = 10). Also the sum in case m = 10 is same as that in case    m = 20.