Permutations And Combinations Question 201

Question: The sum $ \sum\limits _{i=0}^{m}{( \begin{matrix} 10 \\ i \\ \end{matrix} )}( \begin{matrix} 20 \\ m-i \\ \end{matrix} ), $ $ ( where( \begin{matrix} p \\ q \\ \end{matrix} )=0ifp<q ) $ , is maximum when m is [IIT Screening 2002]

Options:

A) 5

B) 15

C) 10

D) 20

Show Answer

Answer:

Correct Answer: B

Solution:

  • For m $ =5,\sum\limits _{i=0}^{5}{( \begin{aligned} & 10 \\ & i \\ \end{aligned} )( \begin{aligned} & 20 \\ & 5-i \\ \end{aligned} )} $ $ =( \begin{aligned} & 10 \\ & 0 \\ \end{aligned} )( \begin{aligned} & 20 \\ & 5 \\ \end{aligned} )+( \begin{aligned} & 10 \\ & 1 \\ \end{aligned} )( \begin{aligned} & 20 \\ & 4 \\ \end{aligned} )+…+( \begin{aligned} & 10 \\ & 5 \\ \end{aligned} )( \begin{aligned} & 20 \\ & 0 \\ \end{aligned} ), $ for m = 10, $ \sum\limits _{i=0}^{10}{( \begin{aligned} & 10 \\ & i \\ \end{aligned} )( \begin{aligned} & 20 \\ & 10-i \\ \end{aligned} )} $ $ =( \begin{aligned} & 10 \\ & 0 \\ \end{aligned} )( \begin{aligned} & 20 \\ & 10 \\ \end{aligned} )+( \begin{aligned} & 10 \\ & 1 \\ \end{aligned} )( \begin{aligned} & 20 \\ & 9 \\ \end{aligned} )+( \begin{aligned} & 10 \\ & 2 \\ \end{aligned} )( \begin{aligned} & 20 \\ & 8 \\ \end{aligned} ) $ $ +…+( \begin{aligned} & 10 \\ & 10 \\ \end{aligned} )( \begin{aligned} & 20 \\ & 0 \\ \end{aligned} ) $ , for m = 15, $ \sum\limits _{i=0}^{15}{( \begin{aligned} & 10 \\ & i \\ \end{aligned} )( \begin{aligned} & 20 \\ & 15-i \\ \end{aligned} )} $ $ =( \begin{aligned} & 10 \\ & 0 \\ \end{aligned} )( \begin{aligned} & 20 \\ & 15 \\ \end{aligned} )+( \begin{aligned} & 10 \\ & 1 \\ \end{aligned} )( \begin{aligned} & 20 \\ & 14 \\ \end{aligned} )+( \begin{aligned} & 10 \\ & 2 \\ \end{aligned} )( \begin{aligned} & 20 \\ & 13 \\ \end{aligned} )+..+( \begin{matrix} 10 \\ 10 \\ \end{matrix} )( \begin{matrix} 20 \\ 5 \\ \end{matrix} ) $ and for m = 20, $ \sum\limits _{i=0}^{20}{( \begin{aligned} & 10 \\ & i \\ \end{aligned} )( \begin{aligned} & 20 \\ & 20-i \\ \end{aligned} )} $ $ =( \begin{aligned} & 10 \\ & 0 \\ \end{aligned} )( \begin{aligned} & 20 \\ & 20 \\ \end{aligned} )+( \begin{aligned} & 10 \\ & 1 \\ \end{aligned} )( \begin{aligned} & 20 \\ & 19 \\ \end{aligned} )+…+( \begin{aligned} & 10 \\ & 10 \\ \end{aligned} )( \begin{aligned} & 20 \\ & 10 \\ \end{aligned} ) $ Clearly, the sum is maximum for m = 15. Note that $ ^{10}C _{r} $ is maximum for r = 5 and $ ^{20}C _{r} $ is maximum for r = 10. Note that the single term $ ^{10}C_5\times {{}^{20}}C _{10} $ (in case m = 15) is greater than the sum $ ^{10}C_0{{}^{20}}C _{10}+{{}^{10}}C_1{{}^{20}}C_9+{{}^{10}}C_2{{}^{20}}C_8+….. $ $ ^{10}C_8{{}^{20}}C_2+{{}^{10}}C_9{{}^{20}}C_1+{{}^{10}}C _{10}{{}^{20}}C_0 $ (in case m = 10). Also the sum in case m = 10 is same as that in case m = 20.



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें