Permutations And Combinations Question 202

Question: The sum of all positive divisors of 960 is [Karnataka CET 2000]

Options:

A) 3048

B) 3087

C) 3047

D) 2180

Show Answer

Answer:

Correct Answer: A

Solution:

  • Given number is 960, we know that $ 960=2^{6}\times 3^{1}\times 5^{1}. $ Therefore bases are $ p_1=2,p_2=3 $ and $ p_3=5. $ and powers $ a_1=6,a_2=1 $ and $ a_3=1. $ Thus sum of all the positive divisors of 960 $ =( \frac{p_1^{a_1+1}-1}{p_1-1} )( \frac{p_2^{a_2+1}-1}{p_2-1} )( \frac{p_3^{a_3+1}-1}{p_3-1} ) $ $ =( \frac{{2^{6+1}}-1}{2-1} )( \frac{{3^{1+1}}-1}{3-1} )( \frac{{5^{1+1}}-1}{5-1} )=(127)(4)(6)=3048 $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें