Question: In a certain test there are  $ n $  questions. In the test  $ {2^{n-i}} $  students gave wrong answers to at least  $ i $  questions, where  $ i=1,\ 2,\ ……n $ . If the total number of wrong answers given is 2047, then  $ n $  is equal to
Options:
A) 10
B) 11
C) 12
D) 13
  Show Answer
  Answer:
Correct Answer: B
Solution:
- Since the number of students giving wrong answers to at least  $ i $  question $ (i=1,\ 2,……..,n)={2^{n-i}} $ . The number of students answering exactly  $ i\ (1\le i\le -1) $  questions wrongly = {the number of students answering at least  $ i $  questions wrongly,  $ i=1,\ 2,\ ………,n)} $  - {the number of students answering at least  $ (i+1) $  questions wrongly $ (2\le i+1\le n)} $   $ ={2^{n-i}}-{2^{n-(i+1)}}(1\le i\le n-1) $ . Now, the number of students answering all the  $ n $  questions wrongly $ ={2^{n-n}}=2^{0} $ . Thus the total number of wrong answers  $ =1({2^{n-1}}-{2^{n-2}}+2({2^{n-2}}-{2^{n-3}})+3({2^{n-3}}-{2^{n-4}}) $                                       $ +……….+(n-1)(2^{1}-2^{0})+n(2^{0}) $   $ ={2^{n-1}}+{2^{n-2}}+{2^{n-3}}+………+2^{0} $ = $ 2^{n}-1 $    $ (\because \ Its\ a\ G\text{.P}\text{.}) $
$ \therefore  $  As given  $ 2^{n}-1=2047\Rightarrow 2^{n}=2048=2^{11} $
$ \Rightarrow n=11 $