Permutations And Combinations Question 270

Question: In how many ways $ n $ books can be arranged in a row so that two specified books are not together

Options:

A) $ n!-(n-2)! $

B) $ (n-1)!(n-2) $

C) $ n!-2(n-1) $

D) $ (n-2)n! $

Show Answer

Answer:

Correct Answer: B

Solution:

  • Total number of arrangements of $ n $ books $ ^{n}P_n\times 1\ !=86400 $ . If two specified books always together then number of ways $ =(n-1)\ !\ \times 2 $ Hence required number of ways $ =n\ !-(n-1)\ !\ \times 2 $ $ =n(n-1)\ !\ -(n-1)\ \times 2=(n-1)\ !\ (n-2) $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें