Permutations And Combinations Question 30
Question: The number of ways in which an examiner can assign 30 marks to 8 questions, awarding not less than 2 marks to any question is
Options:
A) $ ^{21}C_7 $
B) $ ^{30}C _{16} $
C) $ ^{21}C _{16} $
D) None of these
 Correct Answer: A Since the minimum marks to any question is two, the maximum marks that can be assigned to any questions is  $ 16(=30-2\times 7),\ n_1+n_2+……..+n_8=30 $ . If  $ n _{i} $  are the marks assigned to  $ i^{th} $ questions, then  $ n_1+n_2+………..+n_8=30 $  with  $ 2\le n _{i}\le 16 $  for $ i=1,\ 2,……..,8 $ .  Thus the required number of ways = the coefficient of  $ x^{30} $  in  $ {{(x^{2}+x^{3}+…….+x^{16})}^{8}} $  = the coefficient of  $ x^{30} $  in  $ x^{16}{{(1+x+……….x^{14})}^{8}} $  = the coefficient of  $ x^{30} $  in  $ (1+x+x^2+…+x^{14})^8 $  = the coefficient of  $ x^{14} $  in  $ {{(1-x)}^{-8}}\ .\ {{(1-x^{15})}^{8}} $  =  the coefficient of  $ x^{14} $  in     $ { 1+\frac{8}{1\ !}x+\frac{8.9}{2\ !}x^{2}+\frac{8.9.10}{3\ !}x^{3}+…… }(1{{-}^{8}}C_1x^{15}+……) $     = the coefficient $ x^{14} $ in  $ { 1{{+}^{8}}C_1x{{+}^{9}}C_2x^{2}{{+}^{10}}C_3x^{3}+…. } $  since the second bracket has powers of  $ i.e. $  etc. = $ 7\ ! $ .Show Answer
  Answer:
Solution:
 BETA
  BETA 
             
             
           
           
           
          