Permutations And Combinations Question 321

Question: The total number of 5 digit numbers of different digits in which the digit in the middle is the largest, is

Options:

A) $ \sum\limits _{n=4}^{9}{^{n}P_4} $

B) $ \sum\limits _{n=4}^{9}{^{n}P_4}-\frac{1}{3!}\sum\limits _{n=3}^{9}{^{n}P_3} $

C) $ 30(3!) $

D) None of these

Show Answer

Answer:

Correct Answer: D

Solution:

  • [d] Since the largest digit is in the middle, the middle digit is greater than or equal to 4, the number of numbers with 4 in the middle $ {{=}^{4}}P_4{{-}^{3}}P_3. $ ( $ \because $ The other four places are to be filled by 0, 1, 2 and 3, and a number cannot begin with0). Similarly, the numbers of numbers with 5 in the middle $ {{=}^{5}}P_4{{-}^{4}}P_3, $ etc.)
    $ \therefore $ The required number of numbers $ ={{(}^{4}}P_4{{-}^{3}}P_3)+{{(}^{5}}P_4{{-}^{4}}P_3)+{{(}^{6}}P_4{{-}^{5}}P_3)+…+{{(}^{9}}P_4{{-}^{8}}P_3) $ $ =\sum\limits _{n=4}^{9}{^{n}P_4-\sum\limits _{n=3}^{8}{^{n}P_3}} $