Permutations And Combinations Question 323

Question: The value of ?n? for which $ ^{n-1}C_4{{-}^{n-1}}C_3-\frac{5}{4}{{.}^{n-1}}P_2<0, $ Where $ n\in N $

Options:

A) $ {5,6,7,8,9,10} $

B) $ {1,2,3,4,5,6,7,8,9,10} $

C) $ {1,4,5,6,7,8,9,10} $

D) $ (-\infty ,2)\cup (3,11) $

Show Answer

Answer:

Correct Answer: A

Solution:

  • [a] we have, $ ^{n-1}C_4{{-}^{n-1}}C_3-\frac{5}{4}{{,}^{n-2}}P_2<0 $

$ \Rightarrow \frac{(n-1)(n-2)(n-3)(n-4)}{4!}-\frac{(n-1)(n-2)(n-3)}{3!} $

$ -\frac{5}{4}(n-2)(n-3)<0 $

$ \Rightarrow (n-2)(n-3)(n-11)(n+2)<0 $

$ \Rightarrow (n-2)(n-3)(n-11)<0 $

$ [\because n+2>0forn\in N] $

$ \Rightarrow n\in (-\infty ,2)\cup (3,11) $

$ \Rightarrow n\in (0,2)\cup (3,11) $

$ \Rightarrow n=1,4,5,6,7,8,9,10 $ But $ ^{n-1}C_4 $ and $ ^{n-2}P_2 $ both are meaningful for $ n\ge 5. $ Hence, $ n=5,6,7,8,9,10. $