Question: Find the number of non-negative solutions of the systems of equations:  $ a+b=10,a+b+c+d=21,a+b+c+d+e+f=33, $  $ a+b+c+d+e+f+g+h=46 $ , and so on till  $ a+b+c+d+….+x+y+z=208. $
Options:
$ ^{10}P _{22} $
B)  $ ^{22}_{11}\text{P} $
C)  $ ^{13}_{22}P $
D) None of these
  Show Answer
  Answer:
Correct Answer: C
Solution:
- [c] Consider the equation  $ a+b=10 $  number of solutions of this equation is  $ ^{10+2-1}{C _{2-1}}=11. $  Next equation is  $ a+b+c+d=21 $  hence  $ c+d=11 $  and number of solution of this equation is 12. Similarly for third equation  $ a+b+c+d+e+f=33 $  or  $ e+f=12 $  or number of solution is 13. Similarly for last equation  $ a+b+c+d+…+x+y+z=208, $  or  $ y+z=22 $  or number of solution is 23. Required number of ways is  $ 11\times 12\times 13\times …\times 21\times 22\times 23=\frac{23!}{10!} $