Permutations And Combinations Question 350

Question: 5 - Digit numbers are to be formed using 2, 3, 5, 7, 9 without repeating the digits. If p be the number of such numbers that exceed 20000 and q be the number of those that lie between 30000 and 90000, then p:q is:

Options:

A) $ 6:5 $

B) $ 3:2 $

C) $ 4:3 $

D) $ 5:3 $

Show Answer

Answer:

Correct Answer: D

Solution:

  • [d] $ p:\underset{5}{\mathop{TTH}}\underset{4}{\mathop{TH}}\underset{3}{\mathop{H}}\underset{2}{\mathop{T}}\underset{1}{\mathop{0}}\begin{matrix} place \\ ways \\ \end{matrix} $ Total no. of ways $ =5!=120 $ Since all numbers are $ \geq 20,000 $

$ \therefore $ All numbers 2, 3,5,7,9 can come at first place. $ q:\underset{5}{\mathop{TTH}}\underset{4}{\mathop{TH}}\underset{3}{\mathop{H}}\underset{2}{\mathop{T}}\underset{1}{\mathop{0}}\begin{matrix} place \\ ways \\ \end{matrix} $ Total no. of ways $ =4\times 4!=96 $ ( $ \because $ 2 and 9 cannot be put at first place) So, $ p:q=120:96=5:4 $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें