Permutations And Combinations Question 358

Question: The expression $ ^{n}C _{r}+{{4.}^{n}}{C _{r-1}}+{{6.}^{n}}{C _{r-2}}+{{4.}^{n}}{C _{r-3}} $ $ {{+}^{n}}{C _{r-4}} $ is equal to

Options:

A) $ ^{n+4}C _{r} $

B) $ {{2.}^{n+4}}{C _{r-1}} $

C) $ {{4.}^{n}}C _{r} $

D) $ {{11.}^{n}}C _{r} $

Show Answer

Answer:

Correct Answer: A

Solution:

  • [a] $ ^{n}C_7+{{4.}^{n}}{C _{r-1}}+{{6.}^{n}}{C _{r-2}}+{{4.}^{n}}{C _{r-3}}{{+}^{n}}{C _{r-4}} $

$ ={{(}^{n}}C _{r}{{+}^{n}}{C _{r-1}})+3{{(}^{n}}{C _{r-1}}{{+}^{n}}{C _{r-2}}) $

$ +3{{(}^{n}}{C _{r-2}}{{+}^{n}}{C _{r-3}})+{{(}^{n}}{C _{r-3}}{{+}^{n}}{C _{r-4}}) $

$ =n{{+}^{1}}C _{r}+{{3.}^{n+1}}{C _{r-1}}+{{3.}^{n+1}}{C _{r-2}}{{+}^{n+1}}{C _{r-3}} $

$ ={{(}^{n+1}}C _{r}{{+}^{n+1}}{C _{r-1}})+2{{(}^{n+1}}{C _{r-1}}+ $

$ +{{(}^{n+1}}{C _{r-2}}{{+}^{n+1}}{C _{r-3}}) $

$ {{=}^{n+2}}C _{r}+2.{{(}^{n+2}}{C _{r-1}}{{+}^{n+2}}{C _{r-2}}) $

$ ={{(}^{n+2}}C _{r}{{+}^{n+2}}{C _{r-1}})+{{(}^{n+2}}{C _{r-1}}{{+}^{n+2}}{C _{r-2}}) $

$ {{=}^{n+3}}C _{r}{{+}^{n+3}}{C _{r-1}}{{=}^{n+4}}C _{r} $