Permutations And Combinations Question 362
Question: Let $ E=(2n+1)(2n+3)(2n+5)…(4n-3)(4n-1); $ $ n>1 $ then $ 2^{n}E $ divisible by
Options:
A) $ ^{n}{C _{n/2}} $
B) $ ^{2n}C _{n} $
C) $ ^{3n}C _{n} $
D)  $ ^{4n}C _{2n} $
 Correct Answer: D $ \Rightarrow 2^{n}E=\frac{(4n)!}{(2n)!(2n)!}.n!{{=}^{4n}}C _{2n}.n! $ $ \Rightarrow 2^{n}E $  is divisible by  $ ^{4n}C _{2n}. $Show Answer
  Answer:
Solution:
 BETA
  BETA 
             
             
           
           
           
          