Permutations And Combinations Question 365

Question: The least positive integral values of n which satisfies the inequality $ ^{10}{C _{n-1}}>{{2.}^{10}}C _{n} $

Options:

A) 7

B) 8

C) 9

D) 10

Show Answer

Answer:

Correct Answer: B

Solution:

  • [b] We have $ ^{10}{C _{n-1}}>{{2.}^{10}}C _{n} $

$ \Rightarrow \frac{10!}{(n-1)!(11-n)!}>2.\frac{10!}{n!(10-n)!} $

$ \Rightarrow \frac{n!}{(n-1)!}>2\frac{(11-n)!}{(10-n)!} $ i.e, $ n>22-2n $

$ \Rightarrow 3n>22\Rightarrow n>\frac{22}{3}=7\frac{1}{3} $

$ \therefore $ Least + ve integral value of n=8.