Permutations And Combinations Question 373

Question: Let $ S=\sum\limits _{k=0}^{n-1}{^{k+2}P_2,} $ then

Options:

A) n divides 3S

B) n+1 divides 3S

C) n+2 divides 3S

D) All are correct

Show Answer

Answer:

Correct Answer: D

Solution:

  • [d] We have, $ S=\sum\limits _{k=0}^{n-1}{^{k+2}P_2=2!\sum\limits _{k=0}^{n-1}{^{k+2}C_2}} $

$ =(2){{[}^{2}}C_2{{+}^{3}}C_2{{+}^{4}}C_2+…{{+}^{n+1}}C_2] $ But $ ^{2}C_2{{+}^{3}}C_2{{+}^{4}}C_2+…{{+}^{n+1}}C_2 $

$ ={{(}^{3}}C_3{{+}^{3}}C_2){{+}^{4}}C_2+…{{+}^{n+1}}C_2 $

$ ={{(}^{4}}C_3{{+}^{4}}C_2){{+}^{5}}C_2+…{{+}^{n+1}}C_2 $

$ ={{}^{5}}C_3+{{}^{5}}C_2+…{{+}^{n+1}}C_2 $

$ {{=}^{n+2}}C_3=\frac{1}{6}n(n+1)(n+2) $

$ \Rightarrow 3S=n(n+1)(n+2) $

$ \Rightarrow $ n divides 3S, (n+1) divides 3S and (n+2) divides 3S.