Permutations And Combinations Question 373

Question: Let $ S=\sum\limits _{k=0}^{n-1}{^{k+2}P_2,} $ then

Options:

A) n divides 3S

B) n+1 divides 3S

C) n+2 divides 3S

D) All are correct

Show Answer

Answer:

Correct Answer: D

Solution:

  • [d] We have, $ S=\sum\limits _{k=0}^{n-1}{^{k+2}P_2=2!\sum\limits _{k=0}^{n-1}{^{k+2}C_2}} $

$ =(2){{[}^{2}}C_2{{+}^{3}}C_2{{+}^{4}}C_2+…{{+}^{n+1}}C_2] $ But $ ^{2}C_2{{+}^{3}}C_2{{+}^{4}}C_2+…{{+}^{n+1}}C_2 $

$ ={{(}^{3}}C_3{{+}^{3}}C_2){{+}^{4}}C_2+…{{+}^{n+1}}C_2 $

$ ={{(}^{4}}C_3{{+}^{4}}C_2){{+}^{5}}C_2+…{{+}^{n+1}}C_2 $

$ ={{}^{5}}C_3+{{}^{5}}C_2+…{{+}^{n+1}}C_2 $

$ {{=}^{n+2}}C_3=\frac{1}{6}n(n+1)(n+2) $

$ \Rightarrow 3S=n(n+1)(n+2) $

$ \Rightarrow $ n divides 3S, (n+1) divides 3S and (n+2) divides 3S.



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें