Permutations And Combinations Question 378

Question: The number of ways in which an examiner can assign 30 marks to 8 questions, giving not less than 2 marks to any question, is:

Options:

A) $ ^{30}C_7 $

B) $ ^{21}C_8 $

C) $ ^{21}C_7 $

D) $ ^{30}C_8 $

Show Answer

Answer:

Correct Answer: C

Solution:

  • [c] 30 marks to be allotted to 8 questions. Each questions has to be given $ \ge 2marks $ Let questions be a, b, c, d, e, f, g, h and $ a+b+c+d+e+f+g+h=30 $ Let $ a=a_1+2 $ so, $ a_1\ge 0, $ $ b=a_2+2so,a_2\ge 0,….a_8\ge 0 $ So, $ . \begin{matrix} a_1+a_2+…+a_8 \\ +2+2+….+2 \\ \end{matrix} }=30 $

$ \Rightarrow a_1+a_2+…+a_8=30-16=14 $ So, this is a problem of distributing 14 articles in 8 groups. Number of ways $ {{=}^{14+8-1}}{C _{8-1}}{{=}^{21}}C_7 $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें