Permutations And Combinations Question 380

Question: If $ ^{n}{C _{r-1}}{{+}^{n+1}}{C _{r-1}}{{+}^{n+2}}{C _{r-1}}+…{{+}^{2n}}{C _{r-1}} $ $ {{=}^{2n+1}}{C _{r^{2}-132}}{{-}^{n}}C _{r}, $ Then the value of r and the minimum value of n are

Options:

A) 10

B) 11

C) 12

D) 13

Show Answer

Answer:

Correct Answer: C

Solution:

  • [c] Given, $ ^{n}C _{r}{{+}^{n}}{C _{r-1}}{{+}^{n+1}}{C _{r-1}}{{+}^{n+2}}{C _{r-1}}+{{…}^{2n}}{C _{r-1}} $ $ {{=}^{2n+1}}{C _{r^{2}-132}} $

$ \Rightarrow {{}^{n+1}}C _{r}{{+}^{n+1}}{C _{r-1}}+…{{+}^{2n}}{C _{r-1}}{{=}^{2n+1}}{C _{r^{2}-132}} $ $ {{\Rightarrow }^{2n}}C _{r}{{+}^{2n}}{C _{r-1}}{{=}^{2n+1}}{C _{r^{2}-132}} $ $ {{\Rightarrow }^{2n+1}}C _{r}{{=}^{2n+1}}{C _{r^{2}-132}} $

$ \Rightarrow r^{2}-r-132=0 $

$ \Rightarrow (r-12)(r+11)=0\Rightarrow r=12\Rightarrow n\ge 12 $ So, minimum value of n = 12.