Permutations And Combinations Question 51

Question: For $ 2\le r\le n,( \begin{matrix} n \\ r \\ \end{matrix} )+2( \begin{aligned} & n \\ & r-1 \\ \end{aligned} ) $ $ +( \begin{matrix} n \\ r-2 \\ \end{matrix} ) $ is equal to [IIT Screening 2000; Pb. CET 2000]

Options:

A) $ ( \begin{matrix} n+1 \\ r-1 \\ \end{matrix} ) $

B) $ 2( \begin{matrix} n+1 \\ r+1 \\ \end{matrix} ) $

C) $ 2( \begin{matrix} n+2 \\ r \\ \end{matrix} ) $

D) $ ( \begin{matrix} n+2 \\ r \\ \end{matrix} ) $

Show Answer

Answer:

Correct Answer: D

Solution:

  • Expression $ ={{}^{n}}C _{r}+2.{{}^{n}}{C _{r-1}}{{+}^{n}}{C _{r-2}} $ $ ={{(}^{n}}C _{r}+{{}^{n}}{C _{r-1}})+{{(}^{n}}{C _{r-1}}+{{}^{n}}{C _{r-2}}) $ $ ={{}^{n+1}}C _{r}+{{}^{n+1}}{C _{r-1}}={{}^{n+2}}C _{r} $ .