Permutations And Combinations Question 65

Question: The straight lines $ I_1,\ I_2,\ I_3 $ are parallel and lie in the same plane. A total number of $ m $ points are taken on $ I_1,\ n $ points on $ I_2,\ k $ points on $ I_3 $ . The maximum number of triangles formed with vertices at these points are [IIT Screening 1993; UPSEAT 2001]

Options:

A) $ ^{m+n+k}C_3 $

B) $ ^{m+n+k}C_3{{-}^{m}}C_3{{-}^{n}}C_3-{{}^{k}}C_3 $

C) $ ^{m}C_3{{+}^{n}}C_3{{+}^{k}}C_3 $

D) None of these

Show Answer

Answer:

Correct Answer: B

Solution:

  • Total number of points are $ m+n+k $ , the $ \Delta ’s $ formed by these points $ {{=}^{m+n+k}}C_3 $ Joining 3 points on the same line gives no triangle, such $ \Delta ’s $ are $ ^{m}C_3{{+}^{n}}C_3{{+}^{k}}C_3 $ Required number $ {{=}^{m+n+k}}C_3{{-}^{m}}C_3{{-}^{n}}C_3{{-}^{k}}C_3 $ .