Question:  $ \sum\limits _{r=0}^{m}{^{n+r}C _{n}=} $  [Pb. CET 2003]
Options:
A)  $ ^{n+m+1}{C _{n+1}} $
B)  $ ^{n+m+2}C _{n} $
C)  $ ^{n+m+3}{C _{n-1}} $
D) None of these
  Show Answer
  Answer:
Correct Answer: A
Solution:
- Since  $ ^{n}C _{r}{{=}^{n}}{C _{n-r}} $  and  $ ^{n}{C _{r-1}}{{+}^{n}}C _{r}{{=}^{n+1}}C _{r} $  we have   $ \sum\limits _{r=0}^{m}{^{n+r}C _{n}}=\sum\limits _{r=0}^{m}{^{n+r}C _{r}}{{=}^{n}}C_0{{+}^{n+1}}C_1{{+}^{n+2}}C_2+……{{+}^{n+m}}C _{m} $   $ =[1+(n+1)]{{+}^{n+2}}C_2{{+}^{n+3}}C_3+……..{{+}^{n+m}}C _{m} $   $ {{=}^{n+m+1}}{C _{n+1}} $ ,  $ [\because {{\ }^{n}}C _{r}{{=}^{n}}{C _{n-r}}] $ .