Principle Of Mathematical Induction Question 40

Question: For all $ n\in N, $ $ 1+\frac{1}{1+2}+\frac{1}{1+2+3}+…+\frac{1}{1+2+3+…+n} $ is equal to

Options:

A) $ \frac{3n}{n+1} $

B) $ \frac{n}{n+1} $

C) $ \frac{2n}{n-1} $

D) $ \frac{2n}{n+1} $

Show Answer

Answer:

Correct Answer: D

Solution:

  • [d] Let the statement P(n) be defined as $ P(n):1+\frac{1}{1+2}+\frac{1}{1+2+3}+… $
    $ +\frac{1}{1+2+3+…+n}=\frac{2n}{n+1} $
    i.e. $ P(n):1+\frac{1}{1+2}+\frac{1}{1+2+3}+…+\frac{2}{n(n+1)}=\frac{2n}{n+1} $
    Step I: For $ n=1, $ $ P(1):1=\frac{2\times 1}{1+1}=\frac{2}{2}=1, $ which is true. Step II: Let it is true for n = k, i.e., $ 1+\frac{1}{1+2}+\frac{1}{1+2+3}+…+\frac{2}{k(k+1)}=\frac{2k}{k+1} $ ..(i) Step III: For $ n=k+1, $
    $ ( 1+\frac{1}{1+2}+\frac{1}{1+2+3}+…+\frac{2}{k(k+1)} )+\frac{2}{(k+1)(k+2)} $
    $ =\frac{2k}{k+1}+\frac{2}{(k+1)(k+2)} $ [Using equation (i)] $ =\frac{2k(k+2)+2}{(k+1)(k+2)}=\frac{2[ k^{2}+2k+1 ]}{(k+1)(k+2)} $
    [Taking 2 common in numerator part] $ =\frac{2{{(k+1)}^{2}}}{(k+1)(k+2)}=\frac{2(k+1)}{k+2}=\frac{2(k+1)}{(k+1)+1} $
    Therefore, $ P(k+1) $ is true, when P (k) is true, hence, from the principle of mathematical induction, the statement is true for all natural numbers n.



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें