Principle Of Mathematical Induction Question 62

Question: The sum of n terms of $ 1+\frac{1+2}{2}+\frac{1+2+3}{3}+… $ is

Options:

A) $ \frac{m(n+3)}{4} $

B) $ \frac{(n+3)}{3} $

C) $ \frac{n(n-3)}{3} $

D) $ \frac{n(n-3)}{4} $

Show Answer

Answer:

Correct Answer: A

Solution:

  • [a] $ n^{th}termorT_{n}=\frac{1+2+3+…+n}{n}, $ $ S_{n}=\sum{T_{n}=\sum{\frac{1+2+…+n}{n}=\sum{\frac{n(n+1)}{2n}}}} $
    $ \Rightarrow \sum{\frac{n+1}{2}=\frac{1}{2}(\sum{n}+\sum{1})=\frac{1}{2}[ \frac{n(n+1)}{2}+n ]} $ $ =\frac{n(n+1)+2n}{4}=\frac{n(n+3)}{4} $