Probability Question 114

Question: A coin is tossed 2n times. The chance that the number of times one gets head is not equal to the number of times one gets tail is

[DCE 2002]

Options:

A) $ \frac{(2n!)}{{{(n!)}^{2}}}{{( \frac{1}{2} )}^{2n}} $

B) $ 1-\frac{(2n!)}{{{(n!)}^{2}}} $

C) $ 1-\frac{(2n!)}{{{(n!)}^{2}}}.\frac{1}{4^{n}} $

D) None of these

Show Answer

Answer:

Correct Answer: C

Solution:

The required probability = 1 - Probability of equal number of heads and tails

$ =1-{{}^{2n}}C_{n}{{( \frac{1}{2} )}^{n}}{{( \frac{1}{2} )}^{2n-n}}=1-\frac{(2n)!}{n!n!}{{( \frac{1}{4} )}^{n}}=1-\frac{(2n)!}{{{(n!)}^{2}}}\cdot \frac{1}{4^{n}} $ .



Organic Chemistry PYQ

JEE Chemistry Organic Chemistry

Mindmaps Index