Probability Question 17
Question: A point is selected at random from the interior of a circle. The probability that the point is closer to the centre than the boundary of the circle is
Options:
A) $ \frac{3}{4} $
B) $ \frac{1}{2} $
C) $ \frac{1}{4} $
D) None of these
Show Answer
Answer:
Correct Answer: C
Solution:
$ n(S)= $ the area of the circle of radius r $ n(E)= $ the area of the circle of radius $ \frac{r}{2} $
$ \therefore $ The probability $ =\frac{n(E)}{n(S)}=\frac{\pi {{( \frac{r}{2} )}^{2}}}{\pi r^{2}}=\frac{1}{4}. $