Probability Question 226

Question: The probability of a bomb hitting a bridge is $ \frac{1}{2} $ and two direct hits are needed to destroy it. The least number of bombs required so that the probability of the bridge beeing destroyed is greater then 0.9, is

Options:

A) 8

B) 7

C) 6

D) 9

Show Answer

Answer:

Correct Answer: A

Solution:

Let $ n $ be the least number of bombs required and $ X $ the number of bombs that hit the bridge.

Then $ X $ follows a binomial distribution with parameter $ n $ and $ p=\frac{1}{2}. $

Now $ P(X\ge 2)>0.9\Rightarrow 1-P(X<2)>0.9 $
$ \Rightarrow P(X=0)+P(X=1)<0.1 $

$ \Rightarrow {}^{n}C_0{{( \frac{1}{2} )}^{n}}+{}^{n}C_1{{( \frac{1}{2} )}^{n-1}}( \frac{1}{2} )<0.1\Rightarrow 10(n+1)<2^{n} $ This gives $ n\ge 8. $