Probability Question 253
Question: If an integer is chosen at random from first 100 positive integers, then the probability that the chosen number is a multiple of 4 or 6, is
Options:
A) $ \frac{41}{100} $
B) $ \frac{33}{100} $
C) $ \frac{1}{10} $
D) None of these
Show Answer
Answer:
Correct Answer: B
Solution:
Let $ A $ be the event to be multiple of 4 and $ B $ be the event to be multiple of 6
So, $ P(A)=\frac{25}{100}, $
$ P(B)=\frac{16}{100} $ and $ P(A\cap B)=\frac{8}{100} $
Thus required probability is $ P(A\cup B)=P(A)+P(B)-P(A\cap B) $
$ \Rightarrow P(A\cup B)=\frac{25}{100}+\frac{16}{100}-\frac{8}{100}=\frac{33}{100} $ .