Probability Question 253

Question: If an integer is chosen at random from first 100 positive integers, then the probability that the chosen number is a multiple of 4 or 6, is

Options:

A) $ \frac{41}{100} $

B) $ \frac{33}{100} $

C) $ \frac{1}{10} $

D) None of these

Show Answer

Answer:

Correct Answer: B

Solution:

Let $ A $ be the event to be multiple of 4 and $ B $ be the event to be multiple of 6

So, $ P(A)=\frac{25}{100}, $

$ P(B)=\frac{16}{100} $ and $ P(A\cap B)=\frac{8}{100} $

Thus required probability is $ P(A\cup B)=P(A)+P(B)-P(A\cap B) $

$ \Rightarrow P(A\cup B)=\frac{25}{100}+\frac{16}{100}-\frac{8}{100}=\frac{33}{100} $ .