Probability Question 262

Question: A and B are two independent events. The probability that both A and B occur is $ \frac{1}{6} $ and the probability that neither of them occurs is $ \frac{1}{3} $ . Then the probability of the two events are respectively

[Roorkee 1989]

Options:

A) $ \frac{1}{2} $ and $ \frac{1}{3} $

B) $ \frac{1}{5} $ and $ \frac{1}{6} $

C) $ \frac{1}{2} $ and $ \frac{1}{6} $

D) $ \frac{2}{3} $ and $ \frac{1}{4} $

Show Answer

Answer:

Correct Answer: A

Solution:

$ P(A\cap B)=P(A).P(B)=\frac{1}{6} $

$ P(\bar{A}\cap \bar{B})=\frac{1}{3}=1-P(A\cup B) $

$ \Rightarrow \frac{1}{3}=1-[P(A)+P(B)]+\frac{1}{6}\Rightarrow P(A)+P(B)=\frac{5}{6}. $

Hence $ P(A) $ and $ P(B) $ are $ \frac{1}{2} $ and $ \frac{1}{3}. $