Probability Question 268

Question: If A and B are two events. The probability that at most one of A, B occurs, is

Options:

A) $ 1-P(A\cap B) $

B) $ P(\bar{A})+P(\bar{B})-P(\bar{A}\cap \bar{B}) $

C) $ P(\bar{A})+P(\bar{B})+P(A\cup B)-1 $

D) All of these

Show Answer

Answer:

Correct Answer: D

Solution:

Required probability $ =P(\bar{A}\cup \bar{B})=P(\overline{A\cap B}) $

$ =1-P(A\cap B) $

Again, $ P(\bar{A}\cup \bar{B})=P(\bar{A})+P(\bar{B})-P(\bar{A}\cap \bar{B}) $

[By add. Theorem]

Again, $ P(\bar{A}\cup \bar{B})=P(\bar{A})+P(\bar{B})-P(\bar{A}\cap \bar{B}) $

$ =P(\bar{A})+P(\bar{B})-P(\overline{A\cup B}) $

$ =P(\bar{A})+P(\bar{B})-{1-P(A\cup B)} $

$ =P(\bar{A})+P(\bar{B})+P(A\cup B)-1 $

Finally,$ P(\bar{A}\cup \bar{B})=P[(A\cap \bar{B})\cup (\bar{A}\cap B)\cup (\bar{A}\cap \bar{B})] $

$ =P(A\cap \bar{B})+P(\bar{A}\cap B)+P(\bar{A}\cap \bar{B}) $

[ $ \because A\cap \bar{B},\bar{A}\cap B $ and $ \bar{A}\cap \bar{B} $ are mutually exclusive events]

So, alternative [d] is the correct answer.