Probability Question 277

Question: There are four machines and it is known that exactly two of them are faulty. They are tested, one by one, in a random order till both the faulty machines are identified. Then the probability that only two tests are needed is

Options:

A) $ \frac{1}{3} $

B) $ \frac{1}{6} $

C) $ \frac{1}{2} $

D) $ \frac{1}{4} $

Show Answer

Answer:

Correct Answer: A

Solution:

The faulty machines can be identified in two tests only if both the tested machines are either all defective or all non-defective.

See the following tree diagram. (Here D is for defective & ND is for non-defective)

Reqd. Probability $ =\frac{2}{4}\times \frac{1}{3}+\frac{2}{4}\times \frac{1}{3}=\frac{1}{3} $

$ \therefore $ The probability that first machine is defective (or non-defective) is $ \frac{2}{4} $ and the probability that second machine is also defective (or non-defective) is $ \frac{1}{3} $ as 1 defective machine remains in total three machines.