Probability Question 286

Question: n letters to each of which corresponds on addressed envelope are placed in the envelop at random. Then the probability that n letter is placed in the right envelope, will be:

Options:

A) $ \frac{1}{1!}-\frac{1}{2!}+\frac{1}{3!}-\frac{1}{4!}+…{{(-1)}^{n}}\frac{1}{n!} $

B) $ \frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}-\frac{1}{5!}+…\frac{1}{n!} $

C) $ \frac{1}{2!}-\frac{1}{3!}+\frac{1}{4!}-\frac{1}{5!}+…{{(-1)}^{n}}\frac{1}{n!} $

D) None of these

Show Answer

Answer:

Correct Answer: C

Solution:

Probability of n balls $ =1-P(A_1EA_2EA_3E…EA_{n}) $ Where $ A_1…A_{n} $ the event that the letter is placed at right envelope. $ =1-[\Sigma P(A_{i})-\Sigma P(A_{i}\cap A_{k}) $

$ +\Sigma P(A_{i}\cap A_{j}\cap A_{k})…+{{(-1)}^{n-1}}P(A_{i}\cap A_{j}\cap A_{n})] $

Here, $ P(A_{i})=\frac{(n-1)!}{n!} $

$ P(A_1\cap A_2\cap A_3\cap …\cap A_{n})=\frac{(n-r)!}{n!} $
$ \Rightarrow \Sigma \overline{A_1}\cap \overline{A_2}\cap \overline{A_3}\cap ….\cap \overline{A_{n}} $

$ =1-[ \frac{1}{1!}-\frac{1}{2!}+\frac{1}{3!}…(-1)\frac{n-1!}{n!} ] $

$ =\frac{1}{2!}-\frac{1}{3!}+\frac{1}{4!}-….+{{(-1)}^{n}}\frac{1}{n!} $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें