Probability Question 306

Question: In a binomial distribution $ B( n,p=\frac{1}{4} ) $ , if the probability of at least one success is greater than or equal to $ \frac{9}{10} $ , then n is greater than:

Options:

A) $ \frac{1}{{\log_{10}}4+{\log_{10}}3} $

B) $ \frac{9}{{\log_{10}}4-{\log_{10}}3} $

C) $ \frac{4}{{\log_{10}}4-{\log_{10}}3} $

D) $ \frac{1}{{\log_{10}}4-{\log_{10}}3} $

Show Answer

Answer:

Correct Answer: D

Solution:

We have $ P(x\ge 1)\ge \frac{9}{10} $
$ \Rightarrow 1-p(x=0)\ge \frac{9}{10} $
$ \Rightarrow 1{{-}^{n}}C_0{{( \frac{1}{4} )}^{0}}{{( \frac{3}{4} )}^{n}}\ge \frac{9}{10} $
$ \Rightarrow 1-\frac{9}{10}\ge {{( \frac{3}{4} )}^{n}}\Rightarrow {{( \frac{3}{4} )}^{n}}\le ( \frac{1}{10} ) $ Taking log to the base ¾, on both sides, we get $ n{\log_{3/4}}( \frac{3}{4} )\ge {\log_{3/4}}( \frac{1}{10} ) $
$ \Rightarrow n\ge -{\log_{3/4}}10=\frac{-{\log_{10}}10}{{\log_{10}}( \frac{3}{4} )} $
$ \Rightarrow n\ge \frac{1}{{\log_{10}}4-{\log_{10}}3} $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें