Probability Question 309

Question: A fair coin is tossed a fixed number of times. If the probability of getting 7 heads is equal to that of getting 9 heads, then the probability of getting 3 heads is

Options:

A) $ \frac{35}{2^{12}} $

B) $ \frac{35}{2^{14}} $

C) $ \frac{7}{2^{12}} $

D) None of these

Show Answer

Answer:

Correct Answer: A

Solution:

Let the coin be tossed $ n $ times $ P $ (7 heads) $ ={}^{n}C_7{{( \frac{1}{2} )}^{7}}{{( \frac{1}{2} )}^{n-7}}={}^{n}C_7{{( \frac{1}{2} )}^{n}} $ and $ P $ (9 heads) $ ={}^{n}C_9{{( \frac{1}{2} )}^{9}}{{( \frac{1}{2} )}^{n-9}}={}^{n}C_9{{( \frac{1}{2} )}^{n}} $

$ P $ (7 heads) $ =P $ (9 heads)

$ \Rightarrow {}^{n}C_7={}^{n}C_9\Rightarrow n=16 $

$ \therefore P $ (3 heads) $ ={}^{16}C_3{{( \frac{1}{2} )}^{3}}{{( \frac{1}{2} )}^{16-3}}={}^{16}C_3{{( \frac{1}{2} )}^{16}}=\frac{35}{2^{12}}. $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें