Probability Question 330

Question: Given two independent events, if the probability that exactly one of them occurs is $ \frac{26}{49} $ and the probability that none of them occurs is $ \frac{15}{49}, $ then the probability of more probable of the two events is:

Options:

A) 4/7

B) 6/7

C) 3/7

D) 5/7

Show Answer

Answer:

Correct Answer: A

Solution:

Let the probability of occurrence of first event A be a

i.e., P [a] = a

$ \therefore P(notA)=1-a $

And also suppose that probability of occurrence of second event B, $ P(B)=b; $

$ \therefore P(notB)=1-b $

Now, $ P(AandnotB)+P(notAandB)=\frac{26}{49} $

$ \Rightarrow P(A)\times P(notB)+P(notA)\times P(B)=\frac{26}{49} $

$ \Rightarrow a+b-2ab=\frac{26}{49} $ ??.(i)

And P (not A and not B) = $ \frac{15}{49} $

$ \Rightarrow P(notA)\times P(notB)=\frac{15}{49} $

$ \Rightarrow 1-b-a+ab=\frac{15}{49}\Rightarrow a+b-ab=\frac{34}{49} $ ??(ii)

From (i) and (ii), $ a+b=\frac{42}{49} $ ???(iii)

and $ ab=\frac{8}{49} $

$ {{(a-b)}^{2}}={{(a+b)}^{2}}-4ab $

$ =\frac{42}{49}\times \frac{42}{49}-\frac{4\times 8}{49}=\frac{196}{2401} $

$ \therefore a-b=\frac{14}{49} $ ??.(iv)

From (iii) and (iv), $ a=\frac{4}{7},b=\frac{2}{7} $

Hence probability of more probable of the two events $ =\frac{4}{7} $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें