Probability Question 336

Question: For k=1, 2, 3 the box $ B_{k} $ contains k red balls and $ (k+1) $ white balls. Let $ P(B_1)=\frac{1}{2},P(B_2)=\frac{1}{3} $ and $ P(B_3)=\frac{1}{6}. $ A box is selected at random and a ball is drawn from it, if a red ball is drawn, then the probability that it has come from box $ B_2 $ , is

Options:

A) $ \frac{35}{78} $

B) $ \frac{14}{39} $

C) $ \frac{10}{13} $

D) $ \frac{12}{13} $

Show Answer

Answer:

Correct Answer: B

Solution:

In a box, $ B_1=1R,2W;B_2=2R,3W $ and $ B_3=3R,4W $

Also, given that, $ P(B_1)=\frac{1}{2},P(B_2)=\frac{1}{3} $ and $ P(B_3)=\frac{1}{6} $

$ \therefore P( \frac{B_2}{R} ) $

$ =\frac{P(B_2)P( \frac{R}{B_2} )}{P(B_1)P( \frac{R}{B_1} )+P(B_2)P( \frac{R}{B_2} )+P(B_3)P( \frac{R}{B_3} )} $

$ =\frac{\frac{1}{3}\times \frac{2}{5}}{\frac{1}{2}\times \frac{1}{3}+\frac{1}{3}\times \frac{2}{5}+\frac{1}{6}\times \frac{3}{7}}=\frac{\frac{2}{15}}{\frac{1}{6}+\frac{2}{15}+\frac{1}{14}}=\frac{14}{39}. $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें