Probability Question 337

Question: 3 friends A, B and C play the game ?Pahle hum pahle tum? in which they throw a die one after the other and the one who will get a composite number 1st will be announced as winner, if A started the game followed by B and then C then what is the ratio of their winning probabilities?

Options:

A) $ 9:6:4 $

B) $ 8:6:5 $

C) $ 10:5:4 $

D) None of these

Show Answer

Answer:

Correct Answer: A

Solution:

Probability of getting a composite number is $ 2/6=1/3 $

Probability that A will win the game is $ ( \frac{2}{3} )( \frac{1}{3} )+( \frac{2}{3} )( \frac{2}{3} )( \frac{2}{3} )( \frac{2}{3} )( \frac{1}{3} ) $

$ +( \frac{2}{3} )( \frac{2}{3} )( \frac{2}{3} )( \frac{2}{3} )( \frac{2}{3} )( \frac{2}{3} )( \frac{2}{3} )( \frac{1}{3} )+…. $ $ =\frac{\frac{1}{3}}{1-\frac{8}{27}}=( \frac{1}{3}\times \frac{27}{19} )=\frac{9}{19} $

Probability that B will win the game is $ ( \frac{2}{3} )( \frac{1}{3} )+( \frac{2}{3} )( \frac{2}{3} )( \frac{2}{3} )( \frac{2}{3} )( \frac{1}{3} ) $ $ +( \frac{2}{3} )( \frac{2}{3} )( \frac{2}{3} )( \frac{2}{3} )( \frac{2}{3} )( \frac{2}{3} )( \frac{2}{3} )( \frac{1}{3} )+… $ $ =\frac{\frac{2}{9}}{1-\frac{8}{27}}=( \frac{2}{9}\times \frac{27}{19} )=\frac{6}{19} $

Probability that C will win the game is $ ( \frac{2}{3} )( \frac{2}{3} )( \frac{1}{3} )+( \frac{2}{3} )( \frac{2}{3} )( \frac{2}{3} )( \frac{2}{3} )( \frac{1}{3} ) $ $ +( \frac{2}{3} )( \frac{2}{3} )( \frac{2}{3} )( \frac{2}{3} )( \frac{2}{3} )( \frac{2}{3} )( \frac{2}{3} )( \frac{2}{3} )( \frac{1}{3} )+… $ $ =\frac{\frac{4}{27}}{1-\frac{8}{27}}=( \frac{4}{27}\times \frac{27}{19} )=\frac{4}{19} $

So required ratio is $ 9:6:4, $