Probability Question 337

Question: 3 friends A, B and C play the game ?Pahle hum pahle tum? in which they throw a die one after the other and the one who will get a composite number 1st will be announced as winner, if A started the game followed by B and then C then what is the ratio of their winning probabilities?

Options:

A) $ 9:6:4 $

B) $ 8:6:5 $

C) $ 10:5:4 $

D) None of these

Show Answer

Answer:

Correct Answer: A

Solution:

Probability of getting a composite number is $ 2/6=1/3 $

Probability that A will win the game is $ ( \frac{2}{3} )( \frac{1}{3} )+( \frac{2}{3} )( \frac{2}{3} )( \frac{2}{3} )( \frac{2}{3} )( \frac{1}{3} ) $

$ +( \frac{2}{3} )( \frac{2}{3} )( \frac{2}{3} )( \frac{2}{3} )( \frac{2}{3} )( \frac{2}{3} )( \frac{2}{3} )( \frac{1}{3} )+…. $ $ =\frac{\frac{1}{3}}{1-\frac{8}{27}}=( \frac{1}{3}\times \frac{27}{19} )=\frac{9}{19} $

Probability that B will win the game is $ ( \frac{2}{3} )( \frac{1}{3} )+( \frac{2}{3} )( \frac{2}{3} )( \frac{2}{3} )( \frac{2}{3} )( \frac{1}{3} ) $ $ +( \frac{2}{3} )( \frac{2}{3} )( \frac{2}{3} )( \frac{2}{3} )( \frac{2}{3} )( \frac{2}{3} )( \frac{2}{3} )( \frac{1}{3} )+… $ $ =\frac{\frac{2}{9}}{1-\frac{8}{27}}=( \frac{2}{9}\times \frac{27}{19} )=\frac{6}{19} $

Probability that C will win the game is $ ( \frac{2}{3} )( \frac{2}{3} )( \frac{1}{3} )+( \frac{2}{3} )( \frac{2}{3} )( \frac{2}{3} )( \frac{2}{3} )( \frac{1}{3} ) $ $ +( \frac{2}{3} )( \frac{2}{3} )( \frac{2}{3} )( \frac{2}{3} )( \frac{2}{3} )( \frac{2}{3} )( \frac{2}{3} )( \frac{2}{3} )( \frac{1}{3} )+… $ $ =\frac{\frac{4}{27}}{1-\frac{8}{27}}=( \frac{4}{27}\times \frac{27}{19} )=\frac{4}{19} $

So required ratio is $ 9:6:4, $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें