Probability Question 356

Question: A machine has three parts, A, B and C, whose chances of being defective are 0.02, 0.10 and 0.05 respectively. The machine stops working if any one of the parts becomes defective. What is the probability that the machine will not stop working?

Options:

A) 0.06

B) 0.16

C) 0.84

D) 0.94

Show Answer

Answer:

Correct Answer: C

Solution:

Probability that machine stops working $ =P(A\cup B\cup C) $

$ \Rightarrow P(A\cup B\cup C)=P(A)+P(B)+P(C) $ $ -P(A\cap B)-P(A\cap C)-P(B\cap C) $

$ +P(A\cap B\cap C) $

$ \Rightarrow P(A\cup B\cup C)=P(A)+P(B)+P(C) $ $ -P(A)P(B)-P(A)P(C) $ $ -P(B)P(C)+P(A)P(B)P(C) $ ( $ \because $ A, B & C are independent events)

$ \Rightarrow P(A\cup B\cup C)=0.02+0.1+0.05-(0.02\times 0.1) $ $ -(0.02\times 0.05)-(0.1\times 0.05) $ $ +(0.02\times 0.05\times 0.1) $

$ \Rightarrow P(A\cup B\cup C)=0.16 $

$ \therefore $ Probability that the machine will not stop working $ =1-P(A\cup B\cup C)=1-0.16=0.84 $