Probability Question 362

Question: Let A, B, C be the events. If the probability of occurring exactly one event out of A and B is 1-a. out of B and C and A is 1-a and that of occurring three events simultaneously is $ a^{2} $ , then the probability that at least one out of A, B, C will occur is

Options:

A) ½

B) Greater than ½

C) Less than ½

D) $ Greaterthan{\scriptscriptstyle 3!/! _4} $

Show Answer

Answer:

Correct Answer: B

Solution:

P(exactly one event of A and B occurs)

$ =P[(A\cap B’)\cup (A’\cap B)] $

$ =P(A\cup B)-P(A\cap B) $

$ =P(A)+P(B)-2P(A\cap B) $

$ \therefore P(A)+P(B)-2P(A\cap B)=1-a $ - (1)

Similarly, $ P(B)+P(C)-2P(B\cap C)=1-2a $ - (2)

$ P(C)+P(A)-2P(C\cap A)=1-a $ - (3)

$ P(A\cap B\cap C)=a^{2} $

Now $ P(A\cup B\cup C) $

$ =P(A)+P(B)+P(C)-P(A\cap B)-P(B\cap C) $

$ -P(C\cap A)+P(A\cap B\cap C) $

$ =\frac{1}{2}[P(A)+P(B)-2P(B\cap C)+P(B)+P(C) $

$ -2P(B\cap C)+P(C)+P(A)-2P(C\cap A)] $

$ +P(A\cap B\cap C) $

$ =\frac{1}{2}[1-a+1-2a+1-a]+a^{2} $

[using (1), (2), (3) and (4)]

$ =\frac{3}{2}-2a+a^{2}=\frac{1}{2}+{{(a-1)}^{2}}>\frac{1}{2}. $