Probability Question 65

Question: If m rupee coins and n ten paise coins are placed in a line, then the probability that the extreme coins are ten paise coins is

Options:

A) $ ^{m+n}C_{m}/n^{m} $

B) $ \frac{n(n-1)}{(m+n)(m+n-1)} $

C) $ ^{m+n}P_{m}/m^{n} $

D) $ ^{m+n}P_{n}/n^{m} $

Show Answer

Answer:

Correct Answer: B

Solution:

$ m $ rupee coins and $ n $ ten paise coins can be placed in a line in $ \frac{(m+n)!}{m!n!} $ ways.

If the extreme coins are ten paise coins, then the remaining $ n-2 $ ten paise coins and $ m $ one rupee coins can be arragned in a line in $ \frac{(m+n-2)!}{m!(n-2)!} $ ways.

Hence the required probability $ =\frac{\frac{(m+n-2)!}{m!(n-2)!}}{\frac{(m+n)!}{m!n!}}=\frac{n(n-1)}{(m+n)(m+n-1)} $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें