Probability Question 77

Question: Six boys and six girls sit in a row randomly. The probability that the six girls sit together

Options:

A) $ \frac{1}{77} $

B) $ \frac{1}{132} $

C) $ \frac{1}{231} $

D) None of these

Show Answer

Answer:

Correct Answer: B

Solution:

6 boys and 6 girls can be arranged in a row in $ 12! $ ways.

If all the 6 girls are together, then the number of arrangement are $ 7!\times 6! $ .

Hence required probability $ =\frac{7!.6!}{12!} $

$ =\frac{6\times 5\times 4\times 3\times 2}{12\times 11\times 10\times 9\times 8}=\frac{1}{132} $ .