Probability Question 8

Question: If $ \frac{1+4p}{4},\frac{1-p}{2} $ and $ \frac{1-2p}{2} $ are the probabilities of three mutually exclusive events, then value of p is

Options:

A) $ \frac{1}{2} $

B) $ \frac{1}{3} $

C) $ \frac{1}{4} $

D) $ \frac{2}{3} $

Show Answer

Answer:

Correct Answer: A

Solution:

$ \frac{1+4p}{4},\frac{1-p}{2},\frac{1-2p}{2} $

are probabilities of the three mutually exclusive events, then

$ 0\le \frac{1+4p}{4}\le 1,0\le \frac{1-p}{2}\le 1,0\le \frac{1-2p}{2}\le 1 $ and $ 0\le \frac{1+4p}{4}+\frac{1-p}{2}+\frac{1-2p}{2}\le 1 $

$ \therefore -\frac{1}{4}\le p\le \frac{3}{4},-1\le p\le 1,-\frac{1}{2}\le p\frac{1}{2},\frac{1}{2}\le p\le \frac{5}{2} $

$ \therefore \frac{1}{2}\le p\le \frac{1}{2} $ [The intersection of above four intervals]

$ \therefore p=\frac{1}{2} $