Probability Question 90

Question: Let $ 0<P(A)<1,0<P(B)<1 $ and $ P(A\cup B)=P(A)+P(B)-P(A)P(B,) $ then:

Options:

A) $ P(B/A)=P(B)-P(A) $

B) $ P(A’\cup B’)=P(A’)+P(B’) $

C) $ P(A\cap B)=P(A’)P(B’) $

D) None of these

Show Answer

Answer:

Correct Answer: D

Solution:

Given $ P(A)+P(B)-P(A)P(B)=P(A\cup B) $

comparing with $ P(A)+P(B)-P(A\cap B)=P(A\cup B) $ we get $ P(A\cap B)=P(A).P(B) $

$ \therefore $ A and B independent events.