Probability Question 90
Question: Let $ 0<P(A)<1,0<P(B)<1 $ and $ P(A\cup B)=P(A)+P(B)-P(A)P(B,) $ then:
Options:
A) $ P(B/A)=P(B)-P(A) $
B) $ P(A’\cup B’)=P(A’)+P(B’) $
C) $ P(A\cap B)=P(A’)P(B’) $
D) None of these
Show Answer
Answer:
Correct Answer: D
Solution:
Given $ P(A)+P(B)-P(A)P(B)=P(A\cup B) $
comparing with $ P(A)+P(B)-P(A\cap B)=P(A\cup B) $ we get $ P(A\cap B)=P(A).P(B) $
$ \therefore $ A and B independent events.