Relations Question 1

Question: The function $ f:R\to R $ is defined by $ f( x )={{\cos }^{2}}x+{{\sin }^{4}}x $ for $ x\in R $ . Then the range of $ f(x) $ is

Options:

A) $ ( \frac{3}{4},1 ] $

B) $ [ \frac{3}{4},1 ) $

C) $ [ \frac{3}{4},1 ] $

D) $ ( \frac{3}{4},1 ) $

Show Answer

Answer:

Correct Answer: C

Solution:

$ y=f(x)=cos^{2}x+{{\sin }^{4}}x $

$ ={{\cos }^{2}}x+{{\sin }^{2}}x(1-cos^{2}x) $

$ ={{\cos }^{2}}x+{{\sin }^{2}}x-{{\sin }^{2}}xcos^{2}x) $

$ =1-{{\sin }^{2}}x{{\cos }^{2}}x $

$ =1-\frac{1}{4}{{\sin }^{2}}2x $

$ \therefore \frac{3}{4}\le f(x)\le 1 $

$ (\therefore 0\le sin^{2}2x\le 1) $

$ \therefore f(x)\in [3/4,1] $