Relations Question 3

Question: If $ f(x+y)=f(x)+f(y)-xy-1\forall x,y\in R $ and $ f(1)=1, $ then the number of solutions of $ f( n )=n, $

$ n\in N $ , is

Options:

A) 0

B) 1

C) 2

D) more then 2

Show Answer

Answer:

Correct Answer: B

Solution:

Given $ f(x+y)=f(x)+f(y)-xy-1\forall x,y\in R $

$ f(1)=1 $

$ f(2)=f(1+1)=f(1)+f(1)-1-1=0 $

$ f(3)=f(2+1)=f(2)+f(1)-2\times 1-1=-2 $

$ f(n+1)=f(n)+f(1)-n-1=f(n)-n<f(n) $

$ Thus,f(1)>f(2)>f(3)>….,andf(1)=1. $

$ Therefore,f(1)=1andf(n)<1,forn>1 $

Hence,$f(n)=n,n\in N,$has only one solution $n=1. $