Relations Question 5

Question: If $ f(x) $ is an invertible function and $ g( x )=2f( x )+5, $ then the value of $ {g^{-1}}(x) $ is

Options:

A) $ 2{f^{-1}}(x)-5 $

B) $ \frac{1}{2{f^{-1}}(x)+5} $

C) $ \frac{1}{2}{f^{-1}}(x)=5 $

D) $ {f^{-1}}( \frac{x-5}{2} ) $

Show Answer

Answer:

Correct Answer: D

Solution:

Replacing $ x $ by $ {g^{-1}}(x) $ , we get $ x=2f({g^{-1}}(x))+5 $

$ \therefore f({g^{-1}}(x))=\frac{x-5}{2} $

$ \therefore {g^{-1}}(x)={f^{-1}}( \frac{x-5}{2} ) $