Relations Question 6

Question: Let $ g(x)=f(x)-1. $ If $ f(x)+f(1-x)=2\forall x\in R $ , then $ g(x) $ is symmetrical about

Options:

A) the origin

B) the line $ x=\frac{1}{2} $

C) the point (1, 0)

D) the point $ ( \frac{1}{2},0 ) $

Show Answer

Answer:

Correct Answer: D

Solution:

$ f(x)-1+f(1-x)-1=0 $ So, $ g(x)+g(1-x)=0. $

Replacing x by $ x+\frac{1}{2} $ ,

we get $ g( \frac{1}{2}+x )+g( \frac{1}{2}-x )=0. $

So, it is symmetrical about $ ( \frac{1}{2},0 ) $