Relations Question 7

Question: If $ g(x)=x^{2}+x-2 $ and $ \frac{1}{2}gof(x)=2x^{2}-5x+2, $ then which is not a possible f(x)?

Options:

A) $ 2x-3 $

B) $ -2x+2 $

C) $ x-3 $

D) None of these

Show Answer

Answer:

Correct Answer: C

Solution:

$ \frac{1}{2}(gof)(x)=2x^{2}-5x+2 $

Or $ \frac{1}{2}g[f(x)]=2x^{2}-5x+2 $

$ \therefore [{{{f(x)}}^{2}}+{f(x)}-2]=[2x^{2}-5x+2] $

Or $ f{{(x)}^{2}}+f(x)-(4x^{2}-10x+6)=0 $

$ \therefore f(x)=\frac{-1\pm \sqrt{1+4(4x^{2}-10x+6)}}{2} $

$ =\frac{-1\pm \sqrt{(16x^{2}-40x+25)}}{2}=\frac{-1\pm (4x-5)}{2} $

$ =2x-3 $ or $ -2x+2 $