Sequence And Series Question 1

Question: If $ |x|,<1 $ , then the sum of the series $ 1+2x+3x^{2}+4x^{3}+………..\infty $ will be

Options:

A) $ \frac{1}{1-x} $

B) $ \frac{1}{1+x} $

C) $ \frac{1}{{{(1+x)}^{2}}} $

D) $ \frac{1}{{{(1-x)}^{2}}} $

Show Answer

Answer:

Correct Answer: D

Solution:

This is an A.G.P. Let $ S=1+2x+3x^{2}+…….\infty $
$ \Rightarrow $ $ x.S=x+2x^{2}+……..\infty $ Subtracting $ (1-x)S=1+x+x^{2}+………\infty =\frac{1}{1-x} $
$ \therefore $ $ S=\frac{1}{{{(1-x)}^{2}}} $ . Aliter : Use $ S=[ 1+\frac{r}{1-r}\times diff\text{.}\ of\ A\text{.P}\text{.} ]\frac{1}{1-r} $ .