Sequence And Series Question 107
Question: If a, b, c and d are in H.P. then
Options:
A) $ a^{2}+c^{2}>b^{2}+d^{2} $
B) $ a^{2}+d^{2}>b^{2}+c^{2} $
C) $ ac+bd>b^{2}+c^{2} $
D) $ ac+bd>b^{2}+d^{2} $
Show Answer
Answer:
Correct Answer: C
Solution:
[c] If a, b, c and d are in H.P., then  $ \frac{1}{a};\frac{1}{b},\frac{1}{c} $ and  $ \frac{1}{d} $ will be in A.P. Therefore,  $ \frac{1}{b}-\frac{1}{a}=\frac{1}{c}-\frac{1}{b}=\frac{1}{d}-\frac{1}{c} $
$ \Rightarrow b=\frac{2ac}{a+c} $  G.M. between a and c= $ \sqrt{ac} $  Now, since G.M.>H.M., we have  $ \sqrt{ac}>b $  Or  $ ac>b^{2} $                             …(1) Similarly,  $ \sqrt{bd}>c $  Or  $ bd>c^{2} $                             …(2) Adding (1) and (2), we get  $ ac+bd>b^{2}+c^{2} $
 BETA
  BETA 
             
             
           
           
           
          