Sequence And Series Question 114

Question: The sum of $ 1+\frac{2}{5}+\frac{3}{5^{2}}+\frac{4}{5^{3}}+……….. $ upto $ n $ terms is

[MP PET 1982]

Options:

A) $ \frac{25}{16}-\frac{4n+5}{16\times {5^{n-1}}} $

B) $ \frac{3}{4}-\frac{2n+5}{16\times {5^{n+1}}} $

C) $ \frac{3}{7}-\frac{3n+5}{16\times {5^{n-1}}} $

D) $ \frac{1}{2}-\frac{5n+1}{3\times {5^{n+2}}} $

Show Answer

Answer:

Correct Answer: A

Solution:

Given series, let $ S_{n}=1+\frac{2}{5}+\frac{3}{5^{2}}+\frac{4}{5^{3}}+………+\frac{n}{{5^{n-1}}} $ $ \frac{1}{5}S_{n}=\text{ }\frac{1}{5}+\frac{2}{5^{2}}+\frac{3}{5^{3}}+…….+\frac{n}{5^{n}} $ Subtracting, $ ( 1-\frac{1}{5} )S_{n}=1+\frac{1}{5}+\frac{1}{5^{2}}+\frac{1}{5^{3}}+……+upto\ n\ terms\ -\frac{n}{5^{n}} $
$ \Rightarrow $ $ \frac{4}{5}S_{n}=\frac{1-\frac{1}{5^{n}}}{\frac{4}{5}}-\frac{n}{5^{n}} $
$ \Rightarrow $ $ S_{n}=\frac{25}{16}-\frac{4n+5}{16\times {5^{n-1}}} $ .