Sequence And Series Question 116

Question: The sum of $ (n-1) $ terms of $ 1+(1+3)+ $ $ (1+3+5)+……. $ is

[RPET 1999]

Options:

A) $ \frac{n,(n+1),(2n+1)}{6} $

B) $ \frac{n^{2}(n+1)}{4} $

C) $ \frac{n,(n-1),(2n-1)}{6} $

D) $ n^{2} $

Show Answer

Answer:

Correct Answer: C

Solution:

Let $ T_{n} $ be the nth term of the series $ T_{n}=2n-\sum_{i=1}^{n}1 $ Þ $ T_{n}=\frac{2n(n+1)}{2}-n=n^{2} $
$ \therefore S_{n}=\sum\limits_{k=1}^{n}{(k^{2})}=\frac{n(n+1)(2n+1)}{6} $ Hence sum of $ (n-1) $ terms $ {S_{n-1}}=\frac{(n-1),n,(2n-1)}{6} $ .



Organic Chemistry PYQ

JEE Chemistry Organic Chemistry

Mindmaps Index