Sequence And Series Question 116
Question: The sum of $ (n-1) $ terms of $ 1+(1+3)+ $ $ (1+3+5)+……. $ is
[RPET 1999]
Options:
A) $ \frac{n,(n+1),(2n+1)}{6} $
B) $ \frac{n^{2}(n+1)}{4} $
C) $ \frac{n,(n-1),(2n-1)}{6} $
D) $ n^{2} $
Show Answer
Answer:
Correct Answer: C
Solution:
Let  $ T_{n} $  be the nth term of the series  $ T_{n}=2n-\sum_{i=1}^{n}1 $
Þ  $ T_{n}=\frac{2n(n+1)}{2}-n=n^{2} $
$ \therefore S_{n}=\sum\limits_{k=1}^{n}{(k^{2})}=\frac{n(n+1)(2n+1)}{6} $  Hence sum of  $ (n-1) $  terms $ {S_{n-1}}=\frac{(n-1),n,(2n-1)}{6} $ .
 BETA
  BETA 
             
             
           
           
           
          