Sequence And Series Question 134

The natural numbers are written as follows $ 1 $ x $ \begin{matrix} 2 & 3 \\ \end{matrix} $ $ \begin{matrix} 4 & 5 & 6 \\ \end{matrix} $ $ \begin{matrix} 7 & 8 & 9 & 10 \\ . & . & . & . \\ . & . & & . \\ . & . & . & . \\ \end{matrix} $ The sum of the numbers in the $ n^{th} $ row is

Options:

A) $ \frac{n}{2}(n^{2}-1) $

B) $ \frac{n}{2}(n^{2}+1) $

C) $ \frac{2}{n}(n^{2}+1) $

D) $ \frac{2}{n}(n^{2}-1) $

Show Answer

Answer:

Correct Answer: B

Solution:

$ T_{n}=\frac{1}{2}(n^{2}-n+2), $ this is the first term of the $ n^{th} $ row. Also, the terms of the $ n^{th} $ row form an A.P. with its first term as $ \frac{1}{2}(n^{2}-n+2) $ and a common difference of 1. Hence the sum of the terms in the $ n^{th} $ row is $ p:q:r=(-1\pm \sqrt{3})K:2K:(-1\mp \sqrt{3})K $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें