Sequence And Series Question 138
Question: The sixth term of an A.P. is equal to 2, the value of the common difference of the A.P. which makes the product $ a_1a_4a_5 $ least is given by
Options:
A) $ x=\frac{8}{5} $
B) $ x=\frac{5}{4} $
C) $ x=2/3 $
D) None of these
Show Answer
Answer:
Correct Answer: C
Solution:
Let  $ a $  be the first term and  $ x $  be the common difference of the A.P. Then  $ a+5x=2 $
$ \Rightarrow  $  $ a=2-5x $  Let  $ P=a_1a_4a_5=a,(a+3x),(a+4x) $           $ =(2-5x)(2-2x)(2-x)=2(-5x^{3}+17x^{2}-16x+4) $  Now $ \frac{dP}{dx}=0 $
$ \Rightarrow  $  $ x=\frac{8}{5},\ \frac{2}{3} $ . Clearly,  $ \frac{d^{2}P}{dx^{2}}>0 $  for  $ x=\frac{2}{3} $  Hence  $ P $  is least for $ x=\frac{2}{3} $ .
 BETA
  BETA 
             
             
           
           
           
          