Sequence And Series Question 138

Question: The sixth term of an A.P. is equal to 2, the value of the common difference of the A.P. which makes the product $ a_1a_4a_5 $ least is given by

Options:

A) $ x=\frac{8}{5} $

B) $ x=\frac{5}{4} $

C) $ x=2/3 $

D) None of these

Show Answer

Answer:

Correct Answer: C

Solution:

Let $ a $ be the first term and $ x $ be the common difference of the A.P. Then $ a+5x=2 $
$ \Rightarrow $ $ a=2-5x $ Let $ P=a_1a_4a_5=a,(a+3x),(a+4x) $ $ =(2-5x)(2-2x)(2-x)=2(-5x^{3}+17x^{2}-16x+4) $ Now $ \frac{dP}{dx}=0 $
$ \Rightarrow $ $ x=\frac{8}{5},\ \frac{2}{3} $ . Clearly, $ \frac{d^{2}P}{dx^{2}}>0 $ for $ x=\frac{2}{3} $ Hence $ P $ is least for $ x=\frac{2}{3} $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें